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ABSTRACT

The present paper gives an algorithm that finds simultaneously the
shortesi paths between many pairs of nodes in a given network. In the book
by Berge, the values of shortest paths between many pairs of nodes are
found. Here, we use a special matrix multiplication technique to find the
actual arcs that are used to form the shortest paths., In a network with
n nodes, loge[n-l] special matrix multiplications are needed to find all
the shorte-* paths.

The present paper also gives an algorithm for constructing a net-
work with prescribed shortest distances andfwith the total distances as-

soclated with arcs a minimum,



The present paper gives an algorithm that finds simultaneously the
shortest paths between many pairs of nodes in a given network, an algo-
rithm for constructing a network with prescribed sho-~test path distances,
and with the total distances associated with arcs a minimum.

Many papers have been written about finding one shortest path from a
given node to another node in a given network (see for example, (1], [3],
(4], [8], or the review [3] ). If we are interested in shortest paths be-
tween many pairs of nodes, then this problem can certainly be solved by
using any of the existiug algorithms for finding a shortest path and doing
the algorithm over and over for every pair of nodes. Because in finding
a shortest path many informations are obtained during the process, we would
expect that some saving would be acheived if we want to find many shortest
paths Also, for finding maximum flow values between many paires of nodes,
it is known that a great amount of computation can be saved (see [5] ), and
the known dual relatiornship between maximum flow aund shortest path in an
a-b planar network would also lead one to expect that many shortest
paths can be found simultaneously. In the book by Berger [2], the values
of shortest paths between many pairs of noeds are found by a special ma-
trix multiplication technique; in Gomory &nd Hu [6], a minimal cost net-
work 1s found which can satisfy given flow requirements between many pairs
of nodes simultaneously.

We are now interested in finding the actual arcs that are uscd to
form the shortest paths. Although the paper is self-contained, we chal.
use many of the notions of [2] and [6],

We consicder a network consisting of nodes Ni and arcs Aij leading



from nodes N to N, . Associated with each arc, there is & distance func-

i J

tion d1J defired on it We shall not assume either diJ 2] dJi or that

diJ + dJk > dik , but we shall assume throughout the paper that distance

functions are all non-negative,

d1J
We shall follow many authors (see for example, [2] ) in defining two

binary operations-

(1) M (Dr, mmin (4, A
(. e
2) MO A+

Using this special addition and multiplication instead of usual ad-
dition and multiplication, we have a special matrix product of the two

n x n matrices D, = [diJ} and D2 [diJJ the matrix D_ = [diJ] with

d: 3

'3) d ) =mnfd +d.} s=1,...,n.

1] sJ
If we square D = [dij}2’ the distance matrix in the above sense,
the resulting matrix D? -t [d;J} would give the values of shortest paths
using two or less arcs between any two rodes. OSimilarly, Dn-l would
give the shortest path values between any two nodes using n-1 or less
arcs. Since, for a network of n nodes, shortest paths are always of
n-1 arcs or lees, after L times operations iike (3), D2L 1s obtained

with 2b >n-l1 aad L ¢ [logg(nvl) 1 where [loge(nol) ] indicates the

least integer greater than or equal to logg(n-l)u

12 the paper by Gomory and Hu .61, the problem is to find & mini-
mum cost network that will satisfy all given flow requirements simul-
taneously. Assume the cost of building an arc of unit capacity between

rnodes Ni ard N‘j is clj , we want to find yiJ such that

. D.



(1) Eﬂ pq-—}f xPd = 0 J#7pa

X4 3 Ik
{ k

pa \ _pq
(5) R =/ X
i

(6) S xfggyij for ull 1 arnd

b,q

and

(7) min z = ¢ where qu are given flow requirements be-

1571
tween nodes Np and Nq . This problem can certainly be solved by using

as distance and then find the shortest paths between each pair of

ciJ
nodes Np to Nq and give every arc in the shortest path the amount of

qQ _ pP4 Pq _ a
yli),j = Rp . The final yij is obtained by addition F yi,j yiJ . In

p,q

stead of finding shortest paths oune by one, we can find the cheapest net-

work as follows: (see [t] ). We first form the n x n matrix D = [dij]
where diJ is the distancc from nodes Ni to NJ . Then we form the
pcwers of D by squaring in the sense of (3) until ng is obtained
k
where 2 > log,(n-1).
2 4 8

In getting D, D, D, etc., we need only keep the largest power

of D and discard the previous powers of D . At the same time, we form
u - u . .

matrices By » By seeusBy where B, = [biJJ and biJ is the index s in

(3) for which the minimum was obtained.



After loge(n~l) operations or less, we have D and B, , By 5eeesBy -
Now we define arother set of matrix B from Bk . We start with

B, , = RPY B, = (b, is obtained by adding to an all-zero matrix
qu to 1,5 and s,J positions where . 1s obtained from the corresponding

= e = = u#l
BL . Successive B are defined from Bl and B, by adding b1J to

an all-zero matrix in the i1,s, and s,j positions where the value of s 1is

obtained from B . When B, 1is obtained, El glver the y,, which min

1
(7) and that will satisfy the given constraints (4),(5), and (6). §L+l is
identica’ with the requirement matrix . This is certainly sufficient to
wrl
satisfy all requirements; if we let yiJ = gij for all 1 and J .

Since we want to find the cheapest feasible network, we try to find

a series of arcswhich form a path from Ni M) NJ and of minimum total

cost. §L is obtained by addirg qu to a zero matrix to the two pos-

itions in ﬁL that in BL indicate the intermediate node in which the

minimum cost is achieved. As the minimum cost path for each qu consists

of 2l, arcs or less, after tracing back from BLﬁl L times to Bl , ﬁl

gives the y1J which form the cheapest cost feasible network, The soove
algorithm gives the network which contains all the shortest paths, but
does not give any information abcut whether one arc is used in a given
shortest path (or requirement qu)o This is due to yiﬁ being the sum
of maay requirementc.

To convert the above algorithm into one that reveals the actual arcs
rP4

used in different qu , we need only arvificjally give as foliows.

Let Rl ,Rl,“,a,Rm be the given m  requirements between m paire of
k
ncdes We shall let (8) Ry <R, fork=1,...,m-1 . For example,

i=l



R, ~ Xl i satisfy (8).

= k-1
1" yiJ is obtained, we can uniquely decompose yiJ = Ebfgz

wher:z bfg = 1 or zero. Suppose we want to find the shortest path from Nb

to Nq ; first find qu = Rk , and then start from Np . Following the

arcs with 21("1 in the decomposition of yij will lead Np to Nq along

the shortest path.
Take a five-node network as an example, The distances between nodes
are shown in Table 1, (Note distances are not symmetric.) The 02 together

vith Bl matrix is shown in Table 2. The Dh together with 32 matrix is shown

in Teble 3.
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Table 1 Values of [diJ.]
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Suppose that we want *o find the shortest paths from Nl to N,
J

Nl to Nh P N2 to N5 P Nj to Nb and Nu to Nl . Then we

artificially set the corresponding flow requirements to be 1 , 2 , 4 |

8 , and 16 , This is shown in Table 4,

QIOIOIO®I®

16 0 0 0 0

VIDEI®G

Table 4

From B, 1in Table 3 and ﬁj in Table 4, we get Table 5 (by adding

By to 1 , 5 and 8, J ).

QBB

16 0 0 0 0

SOOI

)txﬂ

N

Table 5



From %- in Table 2 and B

n
c

in Table 5, we set El in Table ¢ .,

Ole[o]®]6

P|O®|E|©

16 0 0 O 0

B
1

Table 6

Note that every number in Table 6 has a unique decomposition as

L
k
2 6f 2 ., For example, if we want to find the shortest path from
k=0

N2 to N5 , then we look through Ei and find out what numbers cortain
4L as their partial sum, In the present example, we have 7T = L4 + 2 + 1,
14 =8 + 4L +2 and 16 + 8 + 4, Therefore, the shortest path is
from N2 to Nj b N5 to Nh , and Nh to N5 . If numbers are
represented in the binary system, the process of checking whether
a number contains 2k is a very easy Jjob,

We have given a method of calculating the shortest paths between
all paire of nodes in a network in which distances on arcs are givern,
Now we consider the problems of realization and synthesls, (The protlems

of realization and synthesis of undirected networks were studied by

Hakimi and Yau.



Problem of realization: Given an nxn m txix (4L ] . Whao
lk)l

are the conditions on (£ .] such that tliere exists an n-node

1]

network whose shortest distances arc the glven (213] v It ls easily
seen that the necessary and sufficient conditions on 313 is that

L + 4 for all i j , k . The necessity is clear, If
Ly B > J J

S ] N f

£y > zij + ij , then the shortest path from N, = to e
distance zi) plis the shortest path from NJ to Nk of distance
zjk is a path f{rom hi LO Nk and of less distance than zik .
This would contradict that Lik is t“he shortest distance from Ni

to Nk .
The sufficient part is also clear, If Eik g_lij + Ejk for

all 1, J, k , we can then construct n(n-1) arcs between an

n-node network with dij = Eij for all 1 , j . Then the shortest

path from any ncde Ni to any other node NJ is just the single

*
arc AiJ with distance diJ . Since therc arc many n-node networks

that will have shortest distances equal to the prescribed [iiJ] ,
the following synthesis problem arises naturally. Given an rxn

matrix [Eij]’find a n-node network with given [Eijl as shortest
distances, such that the total amount of dij associated with arcs

of the network is minimum (i.e, min Z d,.) . From nov on, we assume

1J
0.
diJ >
We shall use the words "cptimum network" to mean the network with

total d,. minimum and satisfying the prescribed [f, ] as shortest

) 1j
distances, If an arc Aik is in an optimum network, then the shortest
path from Ni to Nk consists of the single arc Aik with
= . Fop, g were >qual to d,. +d _+.,.+ d d
g = ’ ik 4 11 7 % mk < “ik

v s can use the arcs A A _,..., A
then any shortest path using Aik i1’ o’ » ik

* This 1s the same condition given by Hakimi and Yau.
-10-



instead s. that the arc A can be rerla ed t+, reduce the t tal

ik
Z d ~f the retwork., T=nis wculd ccntradict the netwcrk i1+ an
<)
ortimum network,
Therefore, if an arc Alk 1s in an optimum netwcrk, then

£, ~d , 1f an ar: Axk {¢ ntt in an optimum network, then

(g9) =g .+ U500
9 b ™A v, o

A 2s of -« mim re illowe
where All' 12,.,..,Amk are ar >f *he optimum retwork, It follow

from 5" that

\ 4 \
(10 Eik > max‘Eil, [lﬁ""’%nk!

From .3), the ar:s with d‘j ejual tc the -mailest [  must be 1in an
1 1)

optimun netw:rk,

if we know twe arcs Aij’ Aik are in any cptimum network, then
[ . - -ad +d4,_ ., If £ =d - d. . then the arc
oS by by d g ik %y T Tk
AL wiil not be in any oprimum retwork, If Elk < dtJ * djk ,
then A‘K may ~r may nct te in an cptimum ne<weork, This deperncs
cn if there are -ther ar~s su:h that , , =2 «d . However if
1k 1ip Pk
d and 4d . d for any nodes m n, then 4 , + d
dij < % jk > Tnk J ’ ’ ) JA S

+ d for any ncde m, Conseguently, 1f d d | d
m o omk A RS S by < 13 7% S T 1t Tk

then the sr- A'k 1% Iin an ap* imam network.
&

From - ne abcove cnsiderations, we Zan develcp the folilowing
algori‘hm for constructing an optimum network. Given the rrescrited

distance matrix [Ejjj , we shall circle some entries 21_ and p:*
v

tracket: <n other entries,



-~

Step 1: Circie the smallest £‘J which has not yet been circled,

bracketed, or crossed ¢at, IntiZally, none of Ei has been

J

circled, bracketed, or crosced out.) When an Eij has been

circled, cross out the 1ith coiumn and the jth row. Continue

until every entry 1is circled. or crossed out.

Step 2: Form the matrix D with dij equal to circled »r
bracketed £ , d = o otherwise,
iJ 1]
2 1"
Step 3: Squars D 1in the cense of (3), Let D = [dij]

CompBES [disl with (£ ] . If Eij is not circled and egual
J

d," , pu. a bracke: cn the /|
iJ iy
Step L. If every Eij is etther circlea or bracketed, go to

Step 5. Otherwise, erase 8ll crossed cut columns and rows

to

and return tc Step 1.
Step 5: Tea ratrix with diJ = ciriled lij is the coptimum

network,

Note in Step 1. [EiJ] is being c.rcled with .ncreasing magnitude,
Because of the cross-out process, the [ﬁij] circled in the

same siep is not connected, From (9) and (10) they must be in

the optimum network, In ster 3, we - heck whether or nct scme of
those circlad arcs form a path and if they would imply the om_ssion
of some other arcs., Since we cruy sjuare the distance matrix formed
in Step 2, we only check paths consisting of two arce, When an
entry [Eik] 15 egqual *o d1J + djk , this ﬂik is bracketed

and wiil be used tc form the matrix D in Step ¢ of the next cyni=,
As &t the end cf Step L we erase al. crogsed out columns and rows,
will enoner ¢r later by circicd or bracketed whi'h

every entry Eik

)
-J.‘.’-



implies that arc is in or 1s not in the optimum network, The
uniqueness of the optimum network follows from the observation that

there 1is no alternate choice of circling an arc,

13-
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